Joho the BlogFebruary 2018 - Joho the Blog

February 18, 2018

High schoolers in the streets

My generation was mobilized politically by the threat of being sent to kill and die in Vietnam.

The new generation is being mobilized by the threat of being killed in their classrooms.

It would of course be foolish to assume that the political path of the new generation will follow that of the 1960s generation. There are so many differences. Here are two that seem to me to matter:

First, the draft was an institutionalized, bureaucratic mechanism that every male faced, by law, on his eighteenth birthday. A choice was forced on each young man. But school shootings are random, unpredictable.

Second, because the draft and the war it served were caused by the government, we knew whom to protest against and what had to be done. The way to end mass murders in schools isn’t as conveniently obvious. Yet there are some steps that a high school movement can and will focus on, beginning with making it harder to get a gun than to hack your parents’ Netflix account.

But those differences will not matter if this movement is indeed an expression of the outrage the high school generation feels. They are facing so much that I can’t even begin to list the issues — not that I need to since they are the issues++ that my generation faced, addressed, and in some cases made worse. Our children’s fear of being murdered in their schools is, horrifyingly, simply the identifiable face of the unfair world we are leaving them.

Hearing these young people speak out even before they have buried their friends brings me the saddest hope imaginable. At such an age to stand so strong together…they are fierce and beautiful and I will laugh and cry with joy as they change the world.

Of course I stand with them. Or, more exactly, I stand a respectful and supportive distance behind them. And not just on March 24:

http://act.everytown.org/sign/march-for-our-lives/

1 Comment »

February 15, 2018

Here comes a new round of "I think, therefore I am" philosophical Dad jokes

An earlier draft of Descartes’ Meditations has been discovered, which will inevitably lead to a new round of unfunny jokes under the rubric of “Descartes’ First Draft.” I can’t wait :(

The draft is a big discovery. Camilla Shumaker at Research Frontiers reports that Jeremy Hyman, a philosophy instructor at the University of Arkansas, came across a reference to the manuscript and hied off to a municipal library in Toulouse … a gamble, but he apparently felt he had nothing left Toulouse.

And so it begins…

Comments Off on Here comes a new round of "I think, therefore I am" philosophical Dad jokes

February 11, 2018

The story of lead and crime, told in tweets

Patrick Sharkey [twitter: patrick_sharkey] uses a Twitter thread to evaluate the evidence about a possible relationship between exposure to lead and crime. The thread is a bit hard to get unspooled correctly, but it’s worth it as an example of:

1. Thinking carefully about complex evidence and data.

2. How Twitter affects the reasoning and its expression.

3. The complexity of data, which will only get worse (= better) as machine learning can scale up their size and complexity.

Note: I lack the skills and knowledge to evaluate Patrick’s reasoning. And, hat tip to David Lazer for the retweet of the thread.

Comments Off on The story of lead and crime, told in tweets

The brain is not a computer and the world is not information

Robert Epstein argues in Aeon against the dominant assumption that the brain is a computer, that it processes information, stores and retrieves memories, etc. That we assume so comes from what I think of as the informationalizing of everything.

The strongest part of his argument is that computers operate on symbolic information, but brains do not. There is no evidence (that I know of, but I’m no expert. On anything) that the brain decomposes visual images into pixels and those pixels into on-offs in a code that represents colors.

In the second half, Epstein tries to prove that the brain isn’t a computer through some simple experiments, such as drawing a dollar bill from memory and while looking at it. Someone committed to the idea that the brain is a computer would probably just conclude that the brain just isn’t a very good computer. But judge for yourself. There’s more to it than I’m presenting here.

Back to Epstein’s first point…

It is of the essence of information that it is independent of its medium: you can encode it into voltage levels of transistors, magnetized dust on tape, or holes in punch cards, and it’s the same information. Therefore, a representation of a brain’s states in another medium should also be conscious. Epstein doesn’t make the following argument, but I will (and I believe I am cribbing it from someone else but I don’t remember who).

Because information is independent of its medium, we could encode it in dust particles swirling clockwise or counter-clockwise; clockwise is an on, and counter is an off. In fact, imagine there’s a dust cloud somewhere in the universe that has 86 billion motes, the number of neurons in the human brain. Imagine the direction of those motes exactly matches the on-offs of your neurons when you first spied the love of your life across the room. Imagine those spins shift but happen to match how your neural states shifted over the next ten seconds of your life. That dust cloud is thus perfectly representing the informational state of your brain as you fell in love. It is therefore experiencing your feelings and thinking your thoughts.

That by itself is absurd. But perhaps you say it is just hard to imagine. Ok, then let’s change it. Same dust cloud. Same spins. But this time we say that clockwise is an off, and the other is an on. Now that dust cloud no longer represents your brain states. It therefore is both experiencing your thoughts and feeling and is not experiencing them at the same time. Aristotle would tell us that that is logically impossible: a thing cannot simultaneously be something and its opposite.

Anyway…

Toward the end of the article, Epstein gets to a crucial point that I was very glad to see him bring up: Thinking is not a brain activity, but the activity of a body engaged in the world. (He cites Anthony Chemero’s Radical Embodied Cognitive Science (2009) which I have not read. I’d trace it back further to Andy Clark, David Chalmers, Eleanor Rosch, Heidegger…). Reducing it to a brain function, and further stripping the brain of its materiality to focus on its “processing” of “information” is reductive without being clarifying.

I came into this debate many years ago already made skeptical of the most recent claims about the causes of consciousness by having some awareness of the series of failed metaphors we have used over the past couple of thousands of years. Epstein puts this well, citing another book I have not read (and another book I’ve consequently just ordered):

In his book In Our Own Image (2015), the artificial intelligence expert George Zarkadakis describes six different metaphors people have employed over the past 2,000 years to try to explain human intelligence.

In the earliest one, eventually preserved in the Bible, humans were formed from clay or dirt, which an intelligent god then infused with its spirit. That spirit ‘explained’ our intelligence – grammatically, at least.

The invention of hydraulic engineering in the 3rd century BCE led to the popularity of a hydraulic model of human intelligence, the idea that the flow of different fluids in the body – the ‘humours’ – accounted for both our physical and mental functioning. The hydraulic metaphor persisted for more than 1,600 years, handicapping medical practice all the while.

By the 1500s, automata powered by springs and gears had been devised, eventually inspiring leading thinkers such as René Descartes to assert that humans are complex machines. In the 1600s, the British philosopher Thomas Hobbes suggested that thinking arose from small mechanical motions in the brain. By the 1700s, discoveries about electricity and chemistry led to new theories of human intelligence – again, largely metaphorical in nature. In the mid-1800s, inspired by recent advances in communications, the German physicist Hermann von Helmholtz compared the brain to a telegraph.

Maybe this time our tech-based metaphor has happened to get it right. But history says we should assume not. We should be very alert to the disanologies, which Epstein helps us with.

Getting this right, or at least not getting it wrong, matters. The most pressing problem with the informationalizing of thought is not that it applies a metaphor, or even that the metaphor is inapt. Rather it’s that this metaphor leads us to a seriously diminished understanding of what it means to be a living, caring creature.

I think.

 

Hat tip to @JenniferSertl for pointing out the Aeon article.

Comments Off on The brain is not a computer and the world is not information

February 1, 2018

Can AI predict the odds on you leaving the hospital vertically?

A new research paper, published Jan. 24 with 34 co-authors and not peer-reviewed, claims better accuracy than existing software at predicting outcomes like whether a patient will die in the hospital, be discharged and readmitted, and their final diagnosis. To conduct the study, Google obtained de-identified data of 216,221 adults, with more than 46 billion data points between them. The data span 11 combined years at two hospitals,

That’s from an article in Quartz by Dave Gershgorn (Jan. 27, 2018), based on the original article by Google researchers posted at Arxiv.org.

…Google claims vast improvements over traditional models used today for predicting medical outcomes. Its biggest claim is the ability to predict patient deaths 24-48 hours before current methods, which could allow time for doctors to administer life-saving procedures.

Dave points to one of the biggest obstacles to this sort of computing: the data are in such different formats, from hand-written notes to the various form-based data that’s collected. It’s all about the magic of interoperability … and the frustration when data (and services and ideas and language) can’t easily work together. Then there’s what Paul Edwards, in his great book A Vast Machine calls “data friction”: “…the costs in time, energy, and attention required simply to collect, check, store, move, receive, and access data.” (p. 84)

On the other hand, machine learning can sometimes get past the incompatible expression of data in a way that’s so brutal that it’s elegant. One of the earlier breakthroughs in machine learning came in the 1990s when IBM analyzed the English and French versions of Hansard, the bi-lingual transcripts of the Canadian Parliament. Without the machines knowing the first thing about either language, the system produced more accurate results than software that was fed rules of grammar, bilingual dictionaries, etc.

Indeed, the abstract of the Google paper says “Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation of patients’ entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. ” It continues: “We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization.”

The paper also says that their approach affords clinicians “some transparency into the predictions.” Some transparency is definitely better than none. But, as I’ve argued elsewhere, in many instances there may be tools other than transparency that can give us some assurance that AI’s outcomes accord with our aims and our principles of fairness.

 


 

I found this article by clicking on Dave Gershgon’s byline on a brief article about the Wired version of the paper of mine I referenced in the previous paragraph. He does a great job explaining it. And, believe me, it’s hard to get a writer — well, me, anyway — to acknowledge that without having to insert even one caveat. Thanks, Dave!

Comments Off on Can AI predict the odds on you leaving the hospital vertically?