Joho the Blogai Archives - Joho the Blog

April 2, 2018

"If a lion could talk" updated

“If a lion could talk, we could not understand him.”
— Ludwig Wittgenstein, Philosophical Investigations, 1953.

“If an algorithm could talk, we could not understand it.”
— Deep learning, Now.

1 Comment »

February 11, 2018

The story of lead and crime, told in tweets

Patrick Sharkey [twitter: patrick_sharkey] uses a Twitter thread to evaluate the evidence about a possible relationship between exposure to lead and crime. The thread is a bit hard to get unspooled correctly, but it’s worth it as an example of:

1. Thinking carefully about complex evidence and data.

2. How Twitter affects the reasoning and its expression.

3. The complexity of data, which will only get worse (= better) as machine learning can scale up their size and complexity.

Note: I lack the skills and knowledge to evaluate Patrick’s reasoning. And, hat tip to David Lazer for the retweet of the thread.

Comments Off on The story of lead and crime, told in tweets

The brain is not a computer and the world is not information

Robert Epstein argues in Aeon against the dominant assumption that the brain is a computer, that it processes information, stores and retrieves memories, etc. That we assume so comes from what I think of as the informationalizing of everything.

The strongest part of his argument is that computers operate on symbolic information, but brains do not. There is no evidence (that I know of, but I’m no expert. On anything) that the brain decomposes visual images into pixels and those pixels into on-offs in a code that represents colors.

In the second half, Epstein tries to prove that the brain isn’t a computer through some simple experiments, such as drawing a dollar bill from memory and while looking at it. Someone committed to the idea that the brain is a computer would probably just conclude that the brain just isn’t a very good computer. But judge for yourself. There’s more to it than I’m presenting here.

Back to Epstein’s first point…

It is of the essence of information that it is independent of its medium: you can encode it into voltage levels of transistors, magnetized dust on tape, or holes in punch cards, and it’s the same information. Therefore, a representation of a brain’s states in another medium should also be conscious. Epstein doesn’t make the following argument, but I will (and I believe I am cribbing it from someone else but I don’t remember who).

Because information is independent of its medium, we could encode it in dust particles swirling clockwise or counter-clockwise; clockwise is an on, and counter is an off. In fact, imagine there’s a dust cloud somewhere in the universe that has 86 billion motes, the number of neurons in the human brain. Imagine the direction of those motes exactly matches the on-offs of your neurons when you first spied the love of your life across the room. Imagine those spins shift but happen to match how your neural states shifted over the next ten seconds of your life. That dust cloud is thus perfectly representing the informational state of your brain as you fell in love. It is therefore experiencing your feelings and thinking your thoughts.

That by itself is absurd. But perhaps you say it is just hard to imagine. Ok, then let’s change it. Same dust cloud. Same spins. But this time we say that clockwise is an off, and the other is an on. Now that dust cloud no longer represents your brain states. It therefore is both experiencing your thoughts and feeling and is not experiencing them at the same time. Aristotle would tell us that that is logically impossible: a thing cannot simultaneously be something and its opposite.

Anyway…

Toward the end of the article, Epstein gets to a crucial point that I was very glad to see him bring up: Thinking is not a brain activity, but the activity of a body engaged in the world. (He cites Anthony Chemero’s Radical Embodied Cognitive Science (2009) which I have not read. I’d trace it back further to Andy Clark, David Chalmers, Eleanor Rosch, Heidegger…). Reducing it to a brain function, and further stripping the brain of its materiality to focus on its “processing” of “information” is reductive without being clarifying.

I came into this debate many years ago already made skeptical of the most recent claims about the causes of consciousness by having some awareness of the series of failed metaphors we have used over the past couple of thousands of years. Epstein puts this well, citing another book I have not read (and another book I’ve consequently just ordered):

In his book In Our Own Image (2015), the artificial intelligence expert George Zarkadakis describes six different metaphors people have employed over the past 2,000 years to try to explain human intelligence.

In the earliest one, eventually preserved in the Bible, humans were formed from clay or dirt, which an intelligent god then infused with its spirit. That spirit ‘explained’ our intelligence – grammatically, at least.

The invention of hydraulic engineering in the 3rd century BCE led to the popularity of a hydraulic model of human intelligence, the idea that the flow of different fluids in the body – the ‘humours’ – accounted for both our physical and mental functioning. The hydraulic metaphor persisted for more than 1,600 years, handicapping medical practice all the while.

By the 1500s, automata powered by springs and gears had been devised, eventually inspiring leading thinkers such as René Descartes to assert that humans are complex machines. In the 1600s, the British philosopher Thomas Hobbes suggested that thinking arose from small mechanical motions in the brain. By the 1700s, discoveries about electricity and chemistry led to new theories of human intelligence – again, largely metaphorical in nature. In the mid-1800s, inspired by recent advances in communications, the German physicist Hermann von Helmholtz compared the brain to a telegraph.

Maybe this time our tech-based metaphor has happened to get it right. But history says we should assume not. We should be very alert to the disanologies, which Epstein helps us with.

Getting this right, or at least not getting it wrong, matters. The most pressing problem with the informationalizing of thought is not that it applies a metaphor, or even that the metaphor is inapt. Rather it’s that this metaphor leads us to a seriously diminished understanding of what it means to be a living, caring creature.

I think.

 

Hat tip to @JenniferSertl for pointing out the Aeon article.

Comments Off on The brain is not a computer and the world is not information

December 17, 2017

[liveblog] Mariia Gavriushenko on personalized learning environments

I’m at the STEAM ed Finland conference in Jyväskylä where Mariia Gavriushenko is talking about personalized learning environments.


Web-based learning systems are being more and more widely used in large part because they can be used any time, anywhere. She points to two types: Learning management systems and game-based systems. But they lack personalization that makes them suitable for particular learners in terms of learning speed, knowledge background, preferences in learning and career, goals for future life, and their differing habits. Personalized systems can provide assistance in learning and adapt their learning path. Web-based learning shouldn’t just be more convenient. It should also be better adapted to personal needs.


But this is hard. But if you can do it, it can monitor the learner’s knowledge level and automatically present the right materials. In can help teachers create suitable material and find the most relevant content and convert it into comprehensive info. It can also help students identify the best courses and programs.


She talks about two types of personalized learning systems: 1. systems that allow the user to change the system or 2. the sysytem changes itself to meet the users needs. The systems can be based on rules and context or can be algorithm driven.


Five main features of adaptive learning systems:

  • Pre-test

  • Pacing and control

  • Feedback and assessment

  • Progress tracking and reports

  • Motivation and reward


The ontological presentation of every learner keeps something like a profile for each user, enabling semantic reasoning.


She gives an example of this model: automated academic advising. It’s based on learning analytics. It’s an intelligent learning support system based on semantically-enhanced decision support, that identifies gaps, and recommends materials and courses. It can create a personal study plan. The ontology helps the system understand which topics are connected to others so that it can identify knowledge gaps.


An adaptive vocabulary learning environment provides cildren with an adaptive way to train their vocabulary, taking into account the individuality of the learner. It assumes the more similar the words, the harder they are to recognize.


Mariia believes we will make increasing use of adaptive educational tech.

Comments Off on [liveblog] Mariia Gavriushenko on personalized learning environments

December 16, 2017

[liveblog] Mirka Saarela and Sanna Juutinen on analyzing education data

I’m at the STEAM ed Finland conference in Jyväskylä. Mirka Saarela and Sanna Juutinen are talking about their analysis of education data.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.


There’s a triennial worldwide study by the OECD to assess students. Usually, people are only interested in its ranking of education by country. Finland does extremely well at this. This is surprising because Finland does not do particularly well in the factors that are taken to produce high quality educational systems. So Finnish ed has been studied extensively. PISA augments this analysis using learning analytics. (The US does at best average in the OECD ranking.)


Traditional research usually starts with the literature, develops a hypothesis, collects the data, and checks the result. PISA’s data mining approach starts with the data. “We want to find a needle in the haystack, but we don’t know what the needle looks like.” That is, they don’t know what type of pattern to look for.


Results of 2012 PISA: If you cluster all 24M students with their characteristics and attitudes without regard to their country you get clusters for Asia, developing world, Islamic, western countries. So, that maps well.


For Finland, the most salient factor seems to be its comprehensive school system that promotes equality and equity.

In 2015 for the first time there was a computerized test environment available. Most students used it. The logfile recorded how long students spent on a task and the number of activities (mouse clicks, etc.) as well as the score. They examined the Finnish log file to find student profiles, related to student’s strategies and knowledge. Their analysis found five different clusters. [I can’t read the slide from here. Sorry.] They are still studying what this tells us. (They purposefully have not yet factored in gender.)


Nov. 2017 results showed that girls did far better than boys. The test was done in a chat environment which might have been more familiar for the girls? Is the computerization of the tests affecting the results? Is the computerization of education affecting the results? More research is needed.


Q&A


Q: Does the clustering suggest interventions? E.g., “Slow down. Less clicking.”

A: [I couldn’t quite hear the answer, but I think the answer is that it needs more analysis. I think.]


Q: I work for ETS. Are the slides available?


A: Yes, but the research isn’t public yet.

Comments Off on [liveblog] Mirka Saarela and Sanna Juutinen on analyzing education data

[liveblog] Harri Ketamo on micro-learning

I’m at the STEAM ed Finland conference in Jyväskylä. Harri Ketamo is giving a talk on “micro-learning.” He recently won a prestigious prize for the best new ideas in Finland. He is interested in the use of AI for learning.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

We don’t have enough good teachers globally, so we have to think about ed in new ways, Harri says. Can we use AI to bring good ed to everyone without hiring 200M new teachers globally? If we paid teachers equivalent to doctors and lawyers, we could hire those 200M. But we apparently not willing to do that.


One challenge: Career coaching. What do you want to study? Why? What are the skills you need? What do you need to know?


His company does natural language analysis — not word matches, but meaning. As an example he shows a shareholder agreement. Such agreements always have the same elements. After being trained on law, his company’s AI can create a map of the topic and analyze a block of text to see if it covers the legal requirements…the sort of work that a legal assistant does. For some standard agreements, we may soon not need lawyers, he predicts.


The system’s language model is a mess of words and relations. But if you zoom out from the map, the AI has clustered the concepts. At the Slush Sanghai conference, his AI could develop a list of the companies a customer might want to meet based on a text analysis of the companies’ web sites, etc. Likewise if your business is looking for help with a project.


Finland has a lot of public data about skills and openings. Universities’ curricula are publicly available.[Yay!] Unlike LinkedIn, all this data is public. Harri shows a map that displays the skills and competencies Finnish businesses want and the matching training offered by Finnish universities. The system can explore public information about a user and map that to available jobs and the training that is required and available for it. The available jobs are listed with relevancy expressed as a percentage. It can also look internationally to find matches.


The AI can also put together a course for a topic that a user needs. It can tell what the core concepts are by mining publications, courses, news, etc. The result is an interaction with a bot that talks with you in a Whatsapp like way. (See his paper “Agents and Analytics: A framework for educational data mining with games based learning”). It generates tests that show what a student needs to study if she gets a question wrong.


His newest project, in process: Libraries are the biggest collections of creative, educational material, so the AI ought to point people there. His software can find the common sources among courses and areas of study. It can discover the skills and competencies that materials can teach. This lets it cluster materials around degree programs. It can also generate micro-educational programs, curating a collection of readings.

His platform has an open an API. See Headai.

Q&A


Q: Have you done controlled experiments?


A: Yes. We’ve found that people get 20-40% better performance when our software is used in blended model, i.e., with a human teacher. It helps motivate people if they can see the areas they need to work on disappear over time.


Q: The sw only found male authors in the example you put up of automatically collated materials.


A: Small training set. Gender is not part of the metadata in Finland.


A: Don’t you worry that your system will exacerbate bias?


Q: Humans are biased. AI is a black box. We need to think about how to manage this


Q: [me] Are the topics generated from the content? Or do you start off with an ontology?


A: It creates its ontology out of the data.


Q: [me] Are you committing to make sure that the results of your AI do not reflect the built in biases?


A: Our news system on the Web presents a range of views. We need to think about how to do this for gender issues with the course software.

Comments Off on [liveblog] Harri Ketamo on micro-learning

December 5, 2017

[liveblog] Conclusion of Workshop on Trustworthy Algorithmic Decision-Making

I’ve been at a two-day workshop sponsored by the Michigan State Uiversity and the National Science Foundation: “Workshop on Trustworthy Algorithmic Decision-Making.” After multiple rounds of rotating through workgroups iterating on five different questions, each group presented its findings — questions, insights, areas of future research.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

Seriously, I cannot capture all of this.

Conduct of Data Science

What are the problems?

  • Who defines and how do we ensure good practice in data science and machine learning?

Why is the topic important? Because algorithms are important. And they have important real-world effects on people’s lives.

Why is the problem difficult?

  • Wrong incentives.

  • It can be difficult to generalize practices.

  • Best practices may be good for one goal but not another, e.g., efficiency but not social good. Also: Lack of shared concepts and vocabulary.

How to mitigate the problems?

  • Change incentives

  • Increase communication via vocabularies, translations

  • Education through MOOCS, meetups, professional organizations

  • Enable and encourage resource sharing: an open source lesson about bias, code sharing, data set sharing

Accountability group

The problem: How to integratively assess the impact of an algorithmic system on the public good? “Integrative” = the impact may be positive and negative and affect systems in complex ways. The impacts may be distributed differently across a population, so you have to think about disparities. These impacts may well change over time

We aim to encourage work that is:

  • Aspirationally casual: measuring outcomes causally but not always through randomized control trials.

  • The goal is not to shut down algorithms to to make positive contributions that generat solutions.

This is a difficult problem because:

  • Lack of variation in accountability, enforcements, and interventions.

  • It’s unclear what outcomes should be measure and how. This is context-dependent

  • It’s unclear which interventions are the highest priority

Why progress is possible: There’s a lot of good activity in this space. And it’s early in the topic so there’s an ability to significantly influence the field.

What are the barriers for success?

  • Incomplete understanding of contexts. So, think it in terms of socio-cultural approaches, and make it interdisciplinary.

  • The topic lies between disciplines. So, develop a common language.

  • High-level triangulation is difficult. Examine the issues at multiple scales, multiple levels of abstraction. Where you assess accountability may vary depending on what level/aspect you’re looking at.

Handling Uncertainty

The problem: How might we holistically treat and attribute uncertainty through data analysis and decisions systems. Uncertainty exists everywhere in these systems, so we need to consider how it moves through a system. This runs from choosing data sources to presenting results to decision-makers and people impacted by these results, and beyond that its incorporation into risk analysis and contingency planning. It’s always good to know where the uncertainty is coming from so you can address it.

Why difficult:

  • Uncertainty arises from many places

  • Recognizing and addressing uncertainties is a cyclical process

  • End users are bad at evaluating uncertain info and incorporating uncertainty in their thinking.

  • Many existing solutions are too computationally expensive to run on large data sets

Progress is possible:

  • We have sampling-based solutions that provide a framework.

  • Some app communities are recognizing that ignoring uncertainty is reducing the quality of their work

How to evaluate and recognize success?

  • A/B testing can show that decision making is better after incorporating uncertainty into analysis

  • Statistical/mathematical analysis

Barriers to success

  • Cognition: Train users.

  • It may be difficult to break this problem into small pieces and solve them individually

  • Gaps in theory: many of the problems cannot currently be solved algorithmically.

The presentation ends with a note: “In some cases, uncertainty is a useful tool.” E.g., it can make the system harder to game.

Adversaries, workarounds, and feedback loops

Adversarial examples: add a perturbation to a sample and it disrupts the classification. An adversary tries to find those perturbations to wreck your model. Sometimes this is used not to hack the system so much as to prevent the system from, for example, recognizing your face during a protest.

Feedback loops: A recidivism prediction system says you’re likely to commit further crimes, which sends you to prison, which increases the likelihood that you’ll commit further crimes.

What is the problem: How should a trustworthy algorithm account for adversaries, workarounds, and feedback loops?

Who are the stakeholders?

System designers, users, non-users, and perhaps adversaries.

Why is this a difficult problem?

  • It’s hard to define the boundaries of the system

  • From whose vantage point do we define adversarial behavior, workarounds, and feedback loops.

Unsolved problems

  • How do we reason about the incentives users and non-users have when interacting with systems in unintended ways.

  • How do we think about oversight and revision in algorithms with respect to feedback mechanisms

  • How do we monitor changes, assess anomalies, and implement safeguards?

  • How do we account for stakeholders while preserving rights?

How to recognize progress?

  • Mathematical model of how people use the system

  • Define goals

  • Find stable metrics and monitor them closely

  • Proximal metrics. Causality?

  • Establish methodologies and see them used

  • See a taxonomy of adversarial behavior used in practice

Likely approaches

  • Security methodology to anticipating and unintended behaviors and adversarial interactions’. Monitor and measure

  • Record and taxonomize adversarial behavior in different domains

  • Test . Try to break things.

Barriers

  • Hard to anticipate unanticipated behavior

  • Hard to define the problem in particular cases.

  • Goodhardt’s Law

  • Systems are born brittle

  • What constitutes adversarial behavior vs. a workaround is subjective.

  • Dynamic problem

Algorithms and trust

How do you define and operationalize trust.

The problem: What are the processes through which different stakeholders come to trust an algorithm?

Multiple processes lead to trust.

  • Procedural vs. substantive trust: are you looking at the weights of the algorithms (e.g.), or what were the steps to get you there?

  • Social vs personal: did you see the algorithm at work, or are you relying on peers?

These pathways are not necessarily predictive of each other.

Stakeholders build truth through multiple lenses and priorities

  • the builders of the algorithms

  • the people who are affected

  • those who oversee the outcomes

Mini case study: a child services agency that does not want to be identified. [All of the following is 100% subject to my injection of errors.]

  • The agency uses a predictive algorithm. The stakeholders range from the children needing a family, to NYers as a whole. The agency knew what into the model. “We didn’t buy our algorithm from a black-box vendor.” They trusted the algorithm because they staffed a technical team who had credentials and had experience with ethics…and who they trusted intuitively as good people. Few of these are the quantitative metrics that devs spend their time on. Note that FAT (fairness, accountability, transparency) metrics were not what led to trust.

Temporality:

  • Processes that build trust happen over time.

  • Trust can change or maybe be repaired over time. “

  • The timescales to build social trust are outside the scope of traditional experiments,” although you can perhaps find natural experiments.

Barriers:

  • Assumption of reducibility or transfer from subcomponents

  • Access to internal stakeholders for interviews and process understanding

  • Some elements are very long term

 


 

What’s next for this workshop

We generated a lot of scribbles, post-it notes, flip charts, Slack conversations, slide decks, etc. They’re going to put together a whitepaper that goes through the major issues, organizing them, and tries to capture the complexity while helping to make sense of it.

There are weak or no incentives to set appropriate levels of trust

Key takeways:

  • Trust is irreducible to FAT metrics alone

  • Trust is built over time and should be defined in terms of the temporal process

  • Isolating the algorithm as an instantiation misses the socio-technical factors in trust.

Comments Off on [liveblog] Conclusion of Workshop on Trustworthy Algorithmic Decision-Making

December 4, 2017

Workshop: Trustworthy Algorithmic Decision-Making

I’m at a two-day inter-disciplinary workshop on “Trustworthy Algorithmic Decision-Making” put on by the National Science Foundation and Michigan State University. The 2-page whitepapers
from the participants are online. (Here’s mine.) I may do some live-blogging of the workshops.

Goals:

– Key problems and critical qustionos?

– What to tell pol;icy-makers and others about the impact of these systems?

– Product approaches?

– What ideas, people, training, infrastructure are needed for these approaches?

Excellent diversity of backgrounds: CS, policy, law, library science, a philosopher, more. Good diversity in gender and race. As the least qualified person here, I’m greatly looking forward to the conversations.

Comments Off on Workshop: Trustworthy Algorithmic Decision-Making

November 5, 2017

[liveblog] Stefania Druga on how kids can help teach us about AI

Stefania Druga, a graduate student in the Personal Robots research group at the MIT Media Lab, is leading a discussion focusing on how children can help us to better understand and utilize AI. She’s going to talk about some past and future research projects.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

She shows two applications of AI developed for kids The first is Cayla, a robotic doll. “It got hacked three days after it was released in Germany” and was banned there. The second is Aristotle, which was supposed to be an Alexa for kids. A few weeks ago Mattel decided not to release it, after “parents worried about their kids’ privacy signed petitions”parents worried about their kids’ privacy signed petitions.

Stefania got interested in what research was being done in this field. She found a couple of papers. One (Lovato & Piper 2015
) showed that children mirrored how they interact with Siri, e.g., how angry or assertive. Antother (McReynolds et al., 2017 [pdf]) found that how children and parents interact with smart toys revealed how little parents and children know about how much info is being collected by these toys, e.g. Hello Barbie’s privacy concerns. It also looked at how parents and children were being incentivized to share info on social media.

Stefania’s group did a pilot study, having parents and 27 kids interact with various intelligent agents, including Alexa, Julie Chatbot, Tina the T.Rex, and Google Home. Four or five chidlren would interact with the agent at a time, with an adult moderator. Their parents were in the room.

Stefania shows a video about this project. After the kids interacted with the agent, they asked if it was smarter than the child, if it’s a friend, if it has feelings. Children anthropomorphize AIs in playful ways. Most of the older children thought the agents were more intelligent than they were, while the younger children weren’t sure. Two conclusions: Makers of these devices should pay more attention to how children interact with them, and we need more research.

What did the children think? They thought the agents were friendly and truthful. “They thought two Alexa devices were separate individuals.”They thought two Alexa devices were separate individuals. The older children thought about these agents differently than the younger ones do. This latter may be because of how children start thinking about smartness as they progress through school. A question: do they think about artificial intelligence as being the same as human intelligence?

After playing with the agents, they would probe the nature of the device. “They are trying to place the ontology of the device.”

Also, they treated the devices as gender ambiguous.

The media glommed onto this pilot study. E.g., MIT Technology Review: “Growing Up with Alexa.” Or NYTimes: “Co-Parenting with Alexa.” Wired: Understanding Generation Alpha. From these articles, it seems that people are really polarized about the wisdom of introducing children to these devices.

Is this good for kids? “It’s complicated,” Stefania says. The real question is: How can children and parents leverage intelligent agents for learning, or for other good ends?

Her group did another study, this summer, that had 30 pairs of children and parents navigate a robot to solve a maze. They’d see the maze from the perspective of the robot. They also saw a video of a real mouse navigating a maze, and of another robot solving the maze by itself. “Does changing the agent (themselves, mouse, robot) change their idea of intelligence?”Does changing the agent (themselves, mouse, robot) change their idea of intelligence? Kids and parents both did the study. Most of the kids mirrored their parents’ choices. They even mirrored the words the parents used…and the value placed on those words.

What next? Her group wants to know how to use these devices for learning. They build extensions using Scratch, including for an open source project called Poppy. (She shows a very cool video of the robot playing, collaborating, painting, etc.) Kids can program it easily. Ultimately, she hopes that this might help kids see that they have agency, and that while the robot is smart at some things, people are smart at other things.

Q&A

Q: You said you also worked with the elderly. What are the chief differences?

A: Seniors and kids have a lot in common. They were especially interested in the fact that these agents can call their families. (We did this on tablets, and some of the elderly can’t use them because their skin is too dry.)

Q: Did learning that they can program the robots change their perspective on how smart the robots are?

A: The kids who got the bot through the maze did not show a change in their perspective. When they become fluent in customizing it and understanding how it computes, it might. It matters a lot to have the parents involved in flipping that paradigm.

Q: How were the parents involved in your pilot study?

A: It varied widely by parent. It was especially important to have the parents there for the younger kids because the device sometimes wouldn’t understand the question, or what sorts of things the child could ask it about.

Q: Did you look at how the participants reacted to robots that have strong or weak characteristics of humans or animals.

A: We’ve looked at whether it’s an embodied intelligent agent or not, but not at that yet. One of our colleagues is looking at questions of empathy.

Q: [me] Do the adults ask their children to thank Siri or other such agents?

A: No.

Q: [me] That suggests they’re tacitly shaping them to think that these devices are outside of our social norms?

Q: In my household, the “thank you” extinguishes itself: you do it a couple of times, and then you give it up.

A: This indicates that these systems right now are designed in a very transactional way. You have to say the wake up call every single phrase. But these devices will advance rapidly. Right now it’s unnatural conversation. But wth chatbots kids have a more natural conversation, and will say thank you. And kids want to teach it things, e.g, their names or favorite color. When Alexa doesn’t know what the answer is, the natural thing is to tell it, but that doesn’t work.

Q: Do the kids think these are friends?

A: There’s a real question around animism. Is it ok for a device to be designed to create a relationship with, say, a senior person and to convince them to take their pills? My answer is that people tend to anthropomorphize everything. Over time, kids will figure out the limitations of these tools.

Q: Kids don’t have genders for the devices? The speaking ones all have female voices. The doll is clearly a female.

A: Kids were interchanging genders because the devices are in a fluid space in the spectrum of genders. “They’re open to the fact that it’s an entirely new entity.”

Q: When you were talking about kids wanting to teach the devices things, I was thinking maybe that’s because they want the robot to know them. My question: Can you say more about what you observed with kids who had intelligent agents at home as opposed to those who do not?

A: Half already had a device at home. I’m running a workshop in Saudi Arabia with kids there. I’m very curious to see the differences. Also in Europe. We did one in Colombia among kids who had never seen an Alexa before and who wondered where the woman was. They thought there must be a phone inside. They all said good bye at the end.

Q: If the wifi goes down, does the device’s sudden stupidness concern the children? Do they think it died?

A: I haven’t tried that.

[me] Sounds like that would need to go through an IRB.

Q: I think your work is really foundational for people who want to design for kids.

Comments Off on [liveblog] Stefania Druga on how kids can help teach us about AI

October 27, 2017

[liveblog] Nathan Matias on The Social impact of real-time algorithm decisions

J. Nathan Matias is giving a talk at the weekly AI session held by MIT Media Lab and Harvard’s Berkman Klein Center for Internet & Society. The title is: Testing the social impact of real-time algorithm decisions. (SPOILER: Nate is awesome.) Nathan will be introducing CivilServant.io to us, a service for researching the effects of tech and how it can be better directed to toward the social outcomes we (the civil society “we”) desire. (That’s my paraphrase.)

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

In 2008, the French government approved a law against Web sites that encourage anorexia and bulimia. In 2012, Instagram responded to pressure to limit hashtags that “actively promote self-harm.” Instagram had 40M users, almost as many as France’s 55M active Net users. Researchers at Georgia Tech several years later found that some self-harm sites on Instagram had higher engagement after Instagram’s actions. “ If your algorithm reliably detects people who are at risk of committing suicide, what next? ” If your algorithm reliably detects people who are at risk of committing suicide, what next? If the intervention isn helpful, your algorithm is doing harm.

Nathan shows a two-axis grid for evaluating algorithms: fair-unfair and benefits-harms. Accuracy should be considered to be on the same axis as fairness because it can be measured mathematically. But you can’t test the social impact without putting it into the field. “I’m trying to draw attention to the vertical axis [harm-benefit].”

We often have in mind a particular pipeline: training > model > prediction > people . Sometimes there are rapid feedback loops where the decisions made by people feed back into the model. A judicial system’s prediction risk scores may have no such loop. But the AI that manages a news feed is probably getting the readers’ response as data that tunes the model.

We have organizations that check the quality of items we deal with: UL for electrical products, etc. But we don’t have that sort of consumer protection for social tech. The results are moral panics, bad policies, etc. This is the gap Nate is trying to fill with CivilServant.io, a project supported by the Media Lab and GlobalVoices.

Here’s an example of one of CivilServant’s projects:

Managing fake news is essential for democracy. The social sciences have been dealing with this for quite a while by doing research on individual perception and beliefs, on how social context and culture influence beliefs … and now on algorithms that make autonomous decisions that affect us as citizens e.g., newsfeeds. Newsfeeds work this way: someone posts a link. People react to it, e.g. upvote, discuss, etc. The feed service watches that behavior and uses it to promote or demote the item. And then it feeds back in.

We’ve seen lots of examples of pernicious outcomes of this. E.g., at Reddit an early upvote can have dramatic impact on its ratings over time.

What can we do to govern online misinfo? We could surveill and censor. We could encourage counter-speech. We can imagine some type of algorithmic governance. We can use behavioral nudges, e.g. Facebook tagging articles as “disputed.” But all of these assume that these interventions change behaviors and beliefs. Those assumptions are not always tested.

Nate was approached by /r/worldnews at Reddit, a subreddit with14M subscribers and 70 moderators. At Reddit, moderating can be a very time consuming effort. (Nate spoke to a Reddit mod who had stopped volunteering at a children’s hospital in order to be a mod because she thought she could do more good that way.) This subreddit’s mods wanted to know if they could question the legitimacy of an item without causing it to surge on the platform. Fact-checking a post could nudge Reddit’s AI to boost its presence because of the increased activity.

So, they did an experiment asking people to fact check an article, or fact check and downvote if you can’t verify it. They monitored the ranking of the articles by Reddit for 3 months. [Nate now gives some math. Sorry I can’t capture (or understand) it.] The result: to his surprise, “encouraging fact checking reduced the average rank position of an article”encouraging fact checking reduced the average rank position of an article. Encouraging fact checking and down-voting reduced the spread of inaccurate news by Reddit’s algorithms. [I’m not confident I’m getting that right

Why did encouraging fact checking reduce rankings, but fact checking and voting did not? The mods think this might be because it gave users a constructive way to handle articles from reviled sources, reducing the number of negative comments about them. [I hope I’m getting this right.] Also, “reactance” may have nudged people to upvote just to spite the instructions. Also, users may have mobilized friends to vote on the artciles. Also, encouraging two tasks (fact check and then vote) rather than one may have influenced he timing of the algorithm, making the down-votes less impactful.

This is what Nate calls an “AI-Nudge”: a “second-order effect of influencing human behavior on the behavior of an algorithmic system.” It means you have to think about how humans interact with AI.

Often when people are working on AI, they’re starting from computer science and math. The question is: how can we use social science methods to research the effect of AI? Paluck and Cialdini see a cycle of Pilot/Lab experiments > qualitative methods > field experiences > theory / policy / design. In the Reddit example, Nathan spent considerable time with the community to understand their issues and how they interact with the AI.

Another example of a study: identifying and reducing side-effects of automated copyright law enforcement on Twitter. When people post something to Twitter, bots monitor it to see if violates copyright, resulting in a DMCA takedown notice being issued. Twitter then takes it down. The Lumen Project from BKC archives these notices. The CivilService project observes those notices in real time to study the effects. E.g., “a user’s tweets per day tends to drop after they receive a takedown notice … for a 42-day period”a user’s tweets per day tends to drop after they receive a takedown notice, and then continues dropping throughout the 42-day period they researched. Why this long-term decrease in posting? Maybe fear and risk. Maybe awareness of surveillance.

So, how can these chilling effects be reduced? The CivilService project automatically sends users info about their rights and about surveillance. The results of this intervention are not in yet. The project hopes to find ways to lessen the public’s needless withdrawal from social media. The research can feed empirical legal studies. Policymakers might find it useful. Civil rights orgs as well. And the platforms themselves.

In the course of the Q&As, Nathan mentions that he’s working on ways to explain social science research that non-experts can understand. CivilService’s work is with user communities and it’s developed a set of ways for communicating openly with the users.

Q: You’re trying to make AI more fair…

A: I’m doing consumer protection, so as experts like you work on making AI more fair, we can see the social effects of interventions. But there are feedback loops among them.

Q: What would you do with a community that doesn’t want to change?

A: We work with communities that want our help. In the 1970s, Campbell wrote an essay: “The Experimenting Society.” He asked if by doing behavioral research we’re becoming an authoritarian society because we’re putting power in the hands of the people who can afford to do the research. He proposed enabling communities to do their own studies and research. He proposed putting data scientists into towns across the US, pool their research, and challenge their findings. But this was before the PC. Now it’s far more feasible.

Q: What sort of pushback have you gotten from communities?

A: Some decide not to work with us. In others, there’s contention about the shape of the project. Platforms have changed how they view this work. Three years ago, the platforms felt under siege and wounded. That’s why I decided to create an independent organization. The platforms have a strong incentive to protect their reputations.

Comments Off on [liveblog] Nathan Matias on The Social impact of real-time algorithm decisions

Next Page »