Joho the BlogJoho the Blog - Let's just see what happens

April 5, 2018

[liveblog] Neil Gaikwad Human-AI Collaboration for Sustainable Market Design

I’m at a ThursdAI talk (Harvard’s Berkman Klein Center for Internet & Society and MIT Media Lab) being given by Neil Gaikwad (Twitter: @neilthemathguy, a Ph.D. at the MediaLab, in the Space Enabled Group.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

Markets and institutions are parts of complex ecosystem, Neil says. His research looks at data from satellites that show how the Earth is changing: crops, water, etc. Once you’ve gathered the data, you can use machine learning to visualize the changes. There are ecosystems, including of human behavior, that are affected by this. It affects markets and institutions. E.g., a drought may require an institutional response, and affect markets.

Traditional markets, financial markets, and gig economies all share characteristics. Farmers markets are complex ecosystems of people with differing information and different amounts of it, i.e. asymmetric info. Same for financial markets. Same for gig economies.

Indian markets have been failing; there have been 300,000 suicides in the last 30 years. Stock markets have crashed suddenly due to blackbox marketing; in some cases we still don’t know why. And London has banned Uber. So, it doesn’t matter which markets or institutions we look at, they’re losing our trust.

An article in New Scientist asked what we can do to regain this trust. For black box AI, there are questions of fairness and equity. But what would human-machine collaboration be like? Are there design principles for markets.?

Neil stops for us to discuss.

Q: How do you define the justice?

A: Good question. Fairness? Freedom? The designer has a choice about how to define it.

Q: A UN project created an IT platform that put together farmers and direct consumers. The pricing seemed fairer to both parties. So, maybe avoid intermediaries, as a design principle?

Neil continues. So, what is the concept of justice here?

1. Rawls and Kant: Transcendental institutionalism. It’s deontological: follow a principle for perfect justice. Use those principles to define a perfect institution. The properties are defined by a social contract. But it doesn’t work, as in the examples we just saw. What is missing. People and society. [I.e., you run the institution according to principles, but that doesn’t guarantee that the outcome will be fair and just. My example: Early Web enthusiasts like me thought the Web was an institution built on openness, equality, creative anarchy, etc., yet that obviously doesn’t ensure that the outcome will share those properties.]

2. Realized-focused institutionalism (Sen
2009): How to reverse this trend. It is consequentialist: what will be the consequences of the design of an institution. It’s a comparative assessment of different forms of institutions. Instead of asking for the perfectly justice society, Sen asks how justice can be advanced. The most critical tool for evaluating any institution is to look at how it actually realizes how people’s lives change.

Sen argues that principles are important. They can be expressed by “niti,” Sanskrit for rules and institutions. But you also need nyaya: a form of social arrangement that makes sure that those rules are obeyed. These rules come from social choice, not social contract.

Example: Gig economies. The data comes from mechanical turk, upwork, crowdflower, etc. This creates employment for many people, but it’s tough. E.g., identifying images. Use supervised learning for this. The Turkers, etc., do the labelling to train the image recognition system. The Turkers make almost no money at this. This is the wicked problem of market design: The worker can have identifications rejected, sometimes with demeaning comments.

The Market for Lemons” (Akerlog, et al., 1970): all the cars started to look alike and now all gig-workers look alike to those who hire them: there’s no value given to bringing one’s value to the labor.

So, who owns the data? Who has a stake in the models? In the intellectual property?

If you’re a gig worker, you’re working with strangers. You don’t know the reputation of the person giving me data. Or renting me the Airbnb apartment. So, let’s put a rule: reputation is the backbone. In sharing economies, most of the ratings are the highest. Reputation inflation. So, can we trust reputation? This happens because people have no incentive to rate. There’s social pressure to give a positive rating.

So, thinking about Sen, can we think about an incentive for honest reputation? Neil’s group has been thinking about a system [I thought he said Boomerang, but I can’t find that]. It looks at the workers’ incentives. It looks at the workers’ ratings of each other. If you’re a requester, you’ll see the workers you like first.

Does this help AI design?

MoralMachine has had 1.3M voters and 18M pairwise comparisons (i.e., people deciding to go straight or right). Can this be used as a voting based system for ethical decision making (AAAI 2018)? You collect the pairwise preferences, learn the model of preference, come to a collective preference, and have voting rules for collective decision.

Q: Aren’t you collect preferences, not normative judgments? The data says people would rather kill fat people than skinny ones.

A: You need the social behavior but also rules. For this you have to bring people into the loop.

Q: How do we differentiate between what we say we want and what we really want?

A: There are techniques, such as “Bayesian Truth Serum”nomics.mit.edu/files/1966”>Bayesian Truth Serum.

Conclusion: The success of markets, institutions or algorithms, is highly dependent on how this actually affects people’s lives. This thinking should be central to the design and engineering of socio-technical systems.

3 Comments »

April 4, 2018

A history of Internet addresses

For something I’m writing, I wanted to show what an Internet address was like before the World Wide Web introduced the http:// and the www., but after the DNS — domain name service — had been introduced. So I asked my friend Scott Bradner who has been involved in Internet governance for a very long while. He recently retired after fifty years at Harvard University where he managed networks, was chief security officer, and did so much more.

Scott is a generous teacher, so he answered far more fully than I’d hoped. Here, with his permission, is his response:


 

not such an easy answer – some facts
the ARPANET moved from NCP to TCP/IP on 1 Jan 1983
before then the Network Control Protocol used network addresses that looked like: 9 (the address for the PDP-10 at Harvard)
after 1 jan 1983 the addresses looked like 128.103.1.1 (also the address for the PDP-10 at Harvard)
and that is what the addresses look like to this day (IPv6 addresses look different)
before the DNS was deployed people used a “hosts.txt” file to map a human friendly hame into a network address
so the hosts.txt file pre 1/1/83 had the following entry for harvard
Harv10 9
and the entries in hosts.txt file for harvard after 1/1/83 was
Harv10 128.103.1.1
Harvard 128.103.1.1
and later (still before DNS was deployed) another line was added:
harvard.harvard.edu      128.103.1.1
the user would type something like “ftp harv10” and the system would look up the name in hosts.txt to get the address
all DNS did was to turn the hosts.txt file (which was maintained centrally and was, by definition, out of
date by the time you finished downloading it) into a distributed set of servers/databases – each of which could
be kept up to date on its own and since that database was queried in real time, the response would be up to date
but even with the hosts.txt or DNS you could & still can use the underlying network address itself
e.g.: ftp 128.103.8.36 (my personal computer at the Harvard Psychology Department)

1 Comment »

April 2, 2018

"If a lion could talk" updated

“If a lion could talk, we could not understand him.”
— Ludwig Wittgenstein, Philosophical Investigations, 1953.

“If an algorithm could talk, we could not understand it.”
— Deep learning, Now.

1 Comment »

March 24, 2018

Sixteen speeches

In case you missed any of today’s speeches at The March for Our Lives, here’s a page that has sixteen of them

I, on the other hand, am speechless.

Be the first to comment »

March 19, 2018

[liveblog] Kate Zwaard, on the Library of Congress Labs

Kate Zwaard (twitter: @kzwa) Chief of National Digital Strategies at the Library of Congress and leader of the LC Lab, is opening MIT Libraries’ Grand Challenge Summit..The next 1.5 days will be about the grand challenges in enabling scholarly discovery.

NOTE: Live-blogging. Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

For context she tells us that the LC is the largest library in the world, with 164M items. It has the world’s largest collection of film, maps, comic books, telephone directories, and more. [Too many for me to keep this post up with.]

  • You can wolk for two football fields just in the maps section. The world’s largest collection of recorded sound. The largest collection

  • Personal papers from Ben Franklin, Rosa Parks, Groucho Marx, Claude Shannon, and so many more.

  • Last year they circulated almost a million physical items.

  • Every week 11,000 tangible items come in through the Copyright office.

  • Last year, they digitized 4.7M iems, as well 730M documents crawled from the Web, plus much more. File count: 243M and growing every day.

These serve just one of the LC’s goal: “Acquire, preserve, and provide access to a universal collection of knowledge and the record of America’s creativity.” Not to mention serving Congress, and much more. [I can only keep up with a little of this. Kate’s a fantastic presenter and is not speaking too quickly. The LC is just too big!]

Kate thinks of the LC’s work as an exothermic reaction that needs an activation energy or catalyst. She leads the LC Labs, which started a year ago as a place of experimentation. The LC is a delicate machine, which makes it hard for it to change. The Labs enable experimentation. “Trying things that are easy and cheap is the only way forward.”

When thinking about what to do next, she things about what’s feasible and the impact. One way of having impact: demonstrating that the collection has unexplored potentials for research. She’s especially interested in how the Labs can help deal with the problem of scale at the LC.

She talks about some of Lab’s projects.

If you wanted to make stuff with LC data, there was no way of doing that. Now there’s LC for Robots, added documentation, and Jupyter Notebooks: an open source Web app that let you create open docs that contain code, running text, etc. It lets people play with the API without doing all the work from scratch.

But it’s not enough to throw some resources onto a Web page. The NEH data challenge asked people to create new things using the info about 12M newspapers in the collection. Now the Lab has the Congressional Data Challenge: do something with with Congressional data.

Labs has an Innovator in Residence project. The initial applicants came from LC to give it a try. One of them created a “Beyond Words” crowdsourcing project that asks them to add data to resources

Kate likes helping people find collections they otherwise would have missed. For ten years LC has collaborated wi the Flickr Commons. But they wanted to crowdsource a transcription project for any image of text. A repo will be going up on GitHub shortly for this.

In the second year of the Innovator in Residence, they got the artist Jer Thorp [Twitter: @blprnt] to come for 6 months. Kate talks about his work with the papers of Edward Lorenz, who coined the phrase “The Butterfly Effect.” Jer animated Lorenz’s attractor, which, he points out, looks a bit like a butterfly. Jer’s used the attractor on a collection of 3M words. It results in “something like a poem.” (Here’s Jer’s Artist in the Archive podcast about his residency.)

Jer wonders how we can put serendipity back into the LC and into the Web. “How do we enable our users to be carried off by curiousity not by a particular destination.” The LC is a closed stack library, but it can help guide digital wanderers. ”

Last year the LC released 25M catalog records. Jer did a project that randomly pulls the first names of 20 authors in any particular need. It demonstrates, among other things, the changing demographics of authors. Another project: “Birthy Deathy” that displays birthplace info. Antother looks for polymaths.

In 2018 the Lab will have their first open call for an Innovator in Residence. They’ll be looking for data journalists.

Kate talks about Laura Wrubel
‘s work with the Lab. “Library of Congress Colors” displays a graphic of the dominant colors in a collection.

Or Laura’s Photo Roulette: you guess the date of a photo.

Kate says she likes to think that libraries not just “book holes.” One project: find links among items in the archives. But the WARC format is not amenable to that.

The Lab is partnering with lots of great grops, including JSONstor and WikiData.

They’re working on using machine learning to identify place names in their photos.

What does this have to do with scale, she asks, nothng that the LC has done pretty well with scale. E.g., for the past seven years, the size of their digital collection has doubled every 32 months.

The Library also thinks about how to become a place of warmth and welcome. (She gives a shout out to MIT Libraries’ Future of Libraries
report). Right now, visitors and scholars go to different parts of the building. Visitors to the building see a monument to knowledge, but not a living, breathing place. “The Library is for you. It is a place you own. It is a home.”

She reads from a story by Ann Lamott.

How friendship relates to scale. “Everything good that has happened in my life has happened because of friendship.” The average length of employment of a current employee is thirty years. — that’s not the average retirement year. “It’s not just for the LC but for our field.” Good advice she got: “Pick your career by the kind of people you like to be around.” Librarians!

“We’ve got a tough road ahead of us. We’re still in the early days of the disruption that computation is going to bring to our profession.” “Friendship is what will get us through these hard times. We need to invite peopld into the tent.” “Everything we’ve accomplished has been through the generosity of our friends and colleagues.” This 100% true of the Labs. It’s ust 4 people, but everything they do is done in collaboration.

She concludes (paraphrasing badly): I don’t believe in geniuses, and i don’t believe in paradigm shirts. I believe in friendship and working together over the long term. [She put this far better.]

Q&A

Q: How does the Lab decide on projects?

A: Collaboratively

Q: I’m an archivist at MIT. The works are in closed stack, which can mislead people about the scale. How do we explain the scale in an interesting way.

A: Funding is difficult because so much of the money that comes is to maintain and grow the collection and services. It can be a challenge to carve out funding for experimentation and innovation. We’ve been working hard on finding ways to help people wrap their heads around the place.

Q: Data science students are eager to engage, e.g., as interns. How can academic institutions help to make that happen?

A: We’re very interested in what sorts of partnerships we can create to bring students in. The data is so rich, and the place is so interesting.

Q: Moving from models that think about data as packages as opposed to unpacking and integrating. What do you think about the FAIR principle: making things Findable, Accesible Interoperable, and Reusable? Also, we need to bring in professionals thinking about knowledge much more broadly.

I’m very interested in Hathi Trust‘s data capsules. Are there ways we can allow people to search through audio files that are not going to age into the commons until we’re gone? You’re right: the model of chunks coming in and out is not going to work for us.

Q: In academia, our focus has been to provide resources efficiently. How can weave in serendipity without hurting the efficiency?

A: That’s hard. Maybe we should just serve the person who has a specific purpose. You could give ancillary answers. And crowdsourcing could make a lot more available.

[Great talk.]

3 Comments »

March 14, 2018

Big honor to Cluetrain

The Chartered Institute of Public Relations today gave the Cluetrain Manifesto its Presidents Medal. The announcement is here.

This is a huge honor and a big deal. CIPR is the largest professional association for PR folks in Europe.

Former recipients include — get ready for this —

  • Sir Tim Berners Lee

  • Archbishop Desmond Tutu

  • Princess Anne

  • Prince Philip

Yup, those are now my peeps.

Background: The Cluetrain site went up in 1999 — yes, almost 20 yrs ago — and we turned it into a book in 2000. (The “we” is Doc Searls, Rick Levine, Christopher Locke, and me.) It was an attempt to explain to media and businesses why people like us were so enthusiastic about this new Web thing: it is a place where we get to talk about what mattered to us and to do so in our own voice. That is, it’s a social space, which, surprisingly, was news to much of the media and many businesses. The best-known line from it is Doc’s: “Markets are conversations.”

For the occasion, they asked me to video a talk which is here and is 45 mins long. On the other hand, they wrote up an extensive summary, which should save you north of 42 mins. ( Why me? Pretty random: I was the Cluetrain point person for this.)

Cluetrain got important things wrong, but it also got important things right. CIPR has honored Cluetrain, I believe, as a way of honoring what is right and good about the Web. Still.

1 Comment »

February 18, 2018

High schoolers in the streets

My generation was mobilized politically by the threat of being sent to kill and die in Vietnam.

The new generation is being mobilized by the threat of being killed in their classrooms.

It would of course be foolish to assume that the political path of the new generation will follow that of the 1960s generation. There are so many differences. Here are two that seem to me to matter:

First, the draft was an institutionalized, bureaucratic mechanism that every male faced, by law, on his eighteenth birthday. A choice was forced on each young man. But school shootings are random, unpredictable.

Second, because the draft and the war it served were caused by the government, we knew whom to protest against and what had to be done. The way to end mass murders in schools isn’t as conveniently obvious. Yet there are some steps that a high school movement can and will focus on, beginning with making it harder to get a gun than to hack your parents’ Netflix account.

But those differences will not matter if this movement is indeed an expression of the outrage the high school generation feels. They are facing so much that I can’t even begin to list the issues — not that I need to since they are the issues++ that my generation faced, addressed, and in some cases made worse. Our children’s fear of being murdered in their schools is, horrifyingly, simply the identifiable face of the unfair world we are leaving them.

Hearing these young people speak out even before they have buried their friends brings me the saddest hope imaginable. At such an age to stand so strong together…they are fierce and beautiful and I will laugh and cry with joy as they change the world.

Of course I stand with them. Or, more exactly, I stand a respectful and supportive distance behind them. And not just on March 24:

http://act.everytown.org/sign/march-for-our-lives/

1 Comment »

February 15, 2018

Here comes a new round of "I think, therefore I am" philosophical Dad jokes

An earlier draft of Descartes’ Meditations has been discovered, which will inevitably lead to a new round of unfunny jokes under the rubric of “Descartes’ First Draft.” I can’t wait :(

The draft is a big discovery. Camilla Shumaker at Research Frontiers reports that Jeremy Hyman, a philosophy instructor at the University of Arkansas, came across a reference to the manuscript and hied off to a municipal library in Toulouse … a gamble, but he apparently felt he had nothing left Toulouse.

And so it begins…

Comments Off on Here comes a new round of "I think, therefore I am" philosophical Dad jokes

February 11, 2018

The story of lead and crime, told in tweets

Patrick Sharkey [twitter: patrick_sharkey] uses a Twitter thread to evaluate the evidence about a possible relationship between exposure to lead and crime. The thread is a bit hard to get unspooled correctly, but it’s worth it as an example of:

1. Thinking carefully about complex evidence and data.

2. How Twitter affects the reasoning and its expression.

3. The complexity of data, which will only get worse (= better) as machine learning can scale up their size and complexity.

Note: I lack the skills and knowledge to evaluate Patrick’s reasoning. And, hat tip to David Lazer for the retweet of the thread.

Comments Off on The story of lead and crime, told in tweets

The brain is not a computer and the world is not information

Robert Epstein argues in Aeon against the dominant assumption that the brain is a computer, that it processes information, stores and retrieves memories, etc. That we assume so comes from what I think of as the informationalizing of everything.

The strongest part of his argument is that computers operate on symbolic information, but brains do not. There is no evidence (that I know of, but I’m no expert. On anything) that the brain decomposes visual images into pixels and those pixels into on-offs in a code that represents colors.

In the second half, Epstein tries to prove that the brain isn’t a computer through some simple experiments, such as drawing a dollar bill from memory and while looking at it. Someone committed to the idea that the brain is a computer would probably just conclude that the brain just isn’t a very good computer. But judge for yourself. There’s more to it than I’m presenting here.

Back to Epstein’s first point…

It is of the essence of information that it is independent of its medium: you can encode it into voltage levels of transistors, magnetized dust on tape, or holes in punch cards, and it’s the same information. Therefore, a representation of a brain’s states in another medium should also be conscious. Epstein doesn’t make the following argument, but I will (and I believe I am cribbing it from someone else but I don’t remember who).

Because information is independent of its medium, we could encode it in dust particles swirling clockwise or counter-clockwise; clockwise is an on, and counter is an off. In fact, imagine there’s a dust cloud somewhere in the universe that has 86 billion motes, the number of neurons in the human brain. Imagine the direction of those motes exactly matches the on-offs of your neurons when you first spied the love of your life across the room. Imagine those spins shift but happen to match how your neural states shifted over the next ten seconds of your life. That dust cloud is thus perfectly representing the informational state of your brain as you fell in love. It is therefore experiencing your feelings and thinking your thoughts.

That by itself is absurd. But perhaps you say it is just hard to imagine. Ok, then let’s change it. Same dust cloud. Same spins. But this time we say that clockwise is an off, and the other is an on. Now that dust cloud no longer represents your brain states. It therefore is both experiencing your thoughts and feeling and is not experiencing them at the same time. Aristotle would tell us that that is logically impossible: a thing cannot simultaneously be something and its opposite.

Anyway…

Toward the end of the article, Epstein gets to a crucial point that I was very glad to see him bring up: Thinking is not a brain activity, but the activity of a body engaged in the world. (He cites Anthony Chemero’s Radical Embodied Cognitive Science (2009) which I have not read. I’d trace it back further to Andy Clark, David Chalmers, Eleanor Rosch, Heidegger…). Reducing it to a brain function, and further stripping the brain of its materiality to focus on its “processing” of “information” is reductive without being clarifying.

I came into this debate many years ago already made skeptical of the most recent claims about the causes of consciousness by having some awareness of the series of failed metaphors we have used over the past couple of thousands of years. Epstein puts this well, citing another book I have not read (and another book I’ve consequently just ordered):

In his book In Our Own Image (2015), the artificial intelligence expert George Zarkadakis describes six different metaphors people have employed over the past 2,000 years to try to explain human intelligence.

In the earliest one, eventually preserved in the Bible, humans were formed from clay or dirt, which an intelligent god then infused with its spirit. That spirit ‘explained’ our intelligence – grammatically, at least.

The invention of hydraulic engineering in the 3rd century BCE led to the popularity of a hydraulic model of human intelligence, the idea that the flow of different fluids in the body – the ‘humours’ – accounted for both our physical and mental functioning. The hydraulic metaphor persisted for more than 1,600 years, handicapping medical practice all the while.

By the 1500s, automata powered by springs and gears had been devised, eventually inspiring leading thinkers such as René Descartes to assert that humans are complex machines. In the 1600s, the British philosopher Thomas Hobbes suggested that thinking arose from small mechanical motions in the brain. By the 1700s, discoveries about electricity and chemistry led to new theories of human intelligence – again, largely metaphorical in nature. In the mid-1800s, inspired by recent advances in communications, the German physicist Hermann von Helmholtz compared the brain to a telegraph.

Maybe this time our tech-based metaphor has happened to get it right. But history says we should assume not. We should be very alert to the disanologies, which Epstein helps us with.

Getting this right, or at least not getting it wrong, matters. The most pressing problem with the informationalizing of thought is not that it applies a metaphor, or even that the metaphor is inapt. Rather it’s that this metaphor leads us to a seriously diminished understanding of what it means to be a living, caring creature.

I think.

 

Hat tip to @JenniferSertl for pointing out the Aeon article.

Comments Off on The brain is not a computer and the world is not information

Next Page »